JustFun
How stuffs work
Home
Hot happenings
About Me
Favorite Links
Contact Me
Vacation Photo Album
The Techie
Engineering Jokes
How stuffs work

Enter subhead content here

Physics

Electrical

Unbelievable things

General

Please explain the "Wagon Wheel Effect." How can the wheel appear to move forward, then backward, then stop, just by viewing it differently? -- J, Davenport, IA

    This effect is the result of viewing a series of stop-action frames in rapid sequence as a movie or video. Even though a wagon wheel is turning forward, its orientation during sequential frames of a movie may make it appear to be stopped or turning backward. For example, if the wagon wheel completes exactly one full turn between each frame of the movie, the wheel will appear to be stopped--its orientation in each frame will be the same. If it completes slightly less than one full turn between each frame, it will appear to be turning backward! As you can see, a tiny change in wheel rotation rate, from slightly more than one full turn per frame to slightly less than one full turn per frame, is enough to make the wheel appear to switch from turning forward, to stopped, to turning backward. So it's no wonder that the wheels appear to change speeds abruptly from no apparent reason.

When TV screens or computer monitors are shown on television shows, they flicker or bars of light wave across them. Why does this happen? -- SY, Halifax, Nova Scotia

    Although you can't tell it by looking at a television screen, the image on that screen is formed one dot at a time by beams of electrons that are scanning back and forth across its surface from inside. The image is built one line at a time, from the top of the screen to the bottom of the screen, and each line is itself built one dot at a time, from the left side of the screen to the right side of the screen. You can't see this sequential construction process because your persistence of vision prevents you from seeing any changes in intensity that occur in less than about 1/100 of a second. In any short period of time, the screen will only have had time to produce a few horizontal lines of dots. When a camera or television camera observes a television screen, it often makes its observation in such a short period of time that only part of the screen is built. When you then look at the recorded image, you see a horizontal bar of image--the portion of the image that was built during the observation.

How does a TV or VCR remote control work? Is it infrared light or a laser? How does the TV or VCR know what to do with the light it receives from the remote? -- FC, Lafayette, CA

    The remote unit communicates with the TV or VCR via infrared light, which it produces with one or more light emitting diodes (LED). The most remarkable feature of this communication is that the TV or VCR is able to distinguish the tiny amount of light emitted by the LED from all the background light in the room. This selectivity is made possible by blinking the LED rapidly at one of two different frequencies. Since it's unlikely that any other source of light in the room will blink several hundred thousand times per second and at just the right frequency, the TV or VCR can tell that it's observing light from the remote. The remote sends information to the TV or VCR by switching back and forth between the two different frequencies. For example, it may use the higher frequency to send a "1" bit and the lower frequency to send a "0" bit. The remote sends a long string of these 1's and 0's, and the TV or VCR detects and analyzes this string of bits to determine (1) whether it's directed toward the TV or VCR (an address component in the information) and (2) what it should do as the result of this transmission (a data component in the information). Assuming that the string of bits was intended for the TV or VCR, its digital controller (a simple computer) takes whatever action the data component of the transmission

Suppose you have two electric currents, one consisting of electrons and the other of protons, moving in the same direction at the same velocity. Will the magnetic fields that these currents produce have identical magnitudes and directions? The right hand rule describes the direction of the magnetic field in terms of the direction of current, so it appears that it should be independent of the current's charge. -- ABD, Petersburg, VA

    Current is defined as flowing in the direction of positive charge motion. Because electrons are negatively charged, the current they are carrying is flowing in the direction opposite their motion! In your question, you describe two beams, one of electrons and one of protons, and note that both beams are heading in the same direction at the same speed. The proton beam's current is heading in the same direction as the beam while the electron beam's current is heading in the opposite direction from the beam. Assuming that the two beams have equal numbers of particles per second, they will produce magnetic fields of equal magnitudes. But the magnetic field produced by the electron beam will be directed opposite that of produced by the proton beam!

    A beam of hydrogen atoms--each of which consists of one proton and one electron--is a perfect example of this situation. The electrons in that atomic beam produce a magnetic field in one direction while the protons in that atomic beam produce a magnetic field in the opposite direction. The two fields cancel one another perfectly, as they must because a beam of neutral hydrogen atoms can't produce any magnetic field.

How does a fan motor work? -- JM, Toronto, Ontario

    A fan motor is an induction motor, with an aluminum rotor that spins inside a framework of stationary electromagnets. Aluminum is not a magnetic metal and it only becomes magnetic when an electric current flows through it. In the fan, currents are induced in the aluminum rotor by the action of the electromagnets. Each of these electromagnets carries an alternating current that it receives from the power line and its magnetic poles fluctuate back and forth as the direction of current through it fluctuates back and forth. These electromagnets are arranged and operated so that their magnetic poles seem to rotate around the aluminum rotor. These moving/changing magnetic poles induce currents in the aluminum rotor, making that rotor magnetic, and the rotor is dragged along with the rotating magnetic poles around it. After a few moments of starting, the spinning rotor almost keeps up with the rotating magnetic poles. The different speed settings of the fan correspond to different arrangements of the electromagnets, making the poles rotate around the aluminum rotor at different rates.

What is the difference between a single-phase electric motor and a three phase motor? Does that make one of them more efficient, better, or longer lasting than the other? -- EJ, Houston, TX

    To keep the center component or "rotor" of an electric motor spinning, the magnetic poles of the electromagnets surrounding the rotor must rotate around it. That way, the rotor will be perpetually chasing the rotating magnetic poles. With single-phase electric power, producing that rotating magnetic environment isn't easy. Many single-phase motors use capacitors to provide time-delayed electric power to some of their electromagnets. These electromagnets then produce magnetic poles that turn on and off at times that are delayed relative to the poles of the other electromagnets. The result is magnetic poles that seem to rotate around the rotor and that start it turning. While the capacitor is often unnecessary once the rotor has reached its normal operating speed, the starting process is clearly rather complicated in a single phase motor.

    In a three phase motor, the complicated time structure of the currents flowing through the three power wires makes it easy to produce the required rotating magnetic environment. With the electromagnets surrounding the rotor powered by three-phase electricity, the motor turns easily and without any starting capacitor. In general, three phase motors start more easily and are somewhat more energy efficient during operation than single phase motors.

I was recently riding as a passenger in a van and there was a housefly buzzing around in the van. While trying to squash the fly, I was wondering why was the fly traveling the same speed as the van at 70 mph as it was hovering in mid air. Shouldn't it have smashed into the rear window of the van just like so many bugs would have been, on the grill of the vehicle?? -- DS

    Flies travel at modest speeds relative to the air that surrounds them. Since the outside air is nearly motionless relative to the ground (usually), a fly outside the van is also nearly motionless. When the fast-moving van collides with the nearly motionless fly, the fly's inertia holds it in place while the van squashes it.

    But when the fly is inside the van, the fly travels about in air that is moving with the van. If the van is moving at 70 mph, then so is the air inside it and so is the fly. In fact, everything inside the van moves more or less together and from the perspective of the van and its contents, the whole world outside is what is doing the moving--the van itself can be considered stationary and the van's contents are then also stationary.

    As long as the fly and the air it is in are protected inside the van, the movement of the outside world doesn't matter. The fly buzzes around in its little protected world. But if the van's window is open and the fly ventures outside just as a signpost passes the car, the fly may get creamed by a collision with the "moving" sign. Everything is relative and if you consider the van as stationary, then it is undesirable for the van's contents to get hit by the moving items in the world outside (passing trees, bridge abutments, or oncoming vehicles.

Why does a body at rest remain at rest and a body in motion remain in motion, in the absence of unbalanced force? -- AW, Karachi, Pakistan

    That observation, known as Newton's first law of motion, is one of the fundamental characteristics of the universe. I could answer simply that that's the way the universe works. But a more specific answer is that the universe exhibits translational symmetry--meaning that the laws of physics are the same from your current vantage point as they would be if you shifted a meter to your left. Shifting your vantage point along some linear path--a process called translation--doesn't affect the laws of physics. The laws of physics are said to be symmetric with respect to translations and, because translations of any size are possible, this symmetry is considered to be continuous in character (as opposed to mirror reflection, which is a discrete symmetry). Whenever the laws of physics exhibit a continuous symmetry of this sort, there is a related conserved quantity. The conserved quantity that accompanies translational symmetry is known as momentum. An isolated object's momentum can't change because momentum is a conserved quantity--it can't be created or destroyed. Since momentum is related to motion, an isolated object that's at rest and has no momentum must remain at rest with no momentum. And an isolated object that's moving and has a certain momentum must remain in motion with that same momentum.

    Incidentally, the laws of physics also exhibit rotational symmetry--meaning that turning your head doesn't change the laws of physics--and this symmetry leads to the existence of a conserved quantity known as angular momentum. The laws of physics also don't change with the passage of time, a temporal symmetry that leads to the existence of a conserved quantity known as energy.

How does a Frisbee fly?

    As you begin to move a Frisbee forward, the air in front of the Frisbee splits to flow either over the Frisbee or under it. Because of the Frisbee's shape and the angle at which it's held, the air that flows over the Frisbee has a longer distance to travel and arrives late at the back of the Frisbee. The air flowing under the Frisbee reaches the back first and initially flows upward, around the rear surface of the Frisbee. But once the Frisbee is moving fairly rapidly, this funny upward-flowing tail of air blows away from the back of the Frisbee. As it leaves, it draws the air flowing over the Frisbee with it and speeds that air up. As a result, the air over the Frisbee travels faster than the air under the Frisbee. But the airs above and below the Frisbee have the same amounts of total energy per gram. Since the faster moving air above the Frisbee has more kinetic energy than the slower moving air below the Frisbee, the air above the Frisbee must have less of some other form of energy than the air below the Frisbee. In fact, the air above the Frisbee has less pressure potential energy than the air below it--the air pressure above the Frisbee is less than that below the Frisbee. And since the pressure pushing on the bottom surface of the Frisbee is greater than the pressure pushing on the top surface of the Frisbee, there is a net upward pressure force on the Frisbee. This upward pressure force balances the downward weight of the Frisbee and keeps the Frisbee from falling.

How does a boomerang work?

    The correct way to throw a boomerang is overhand and, unlike a Frisbee, in a nearly vertical plane. (Usually the ideal angle is about 15° from vertical.) The boomerang is essentially a rotating airplane wing, and its shape produces lift using the Bernoulli effect in the same way an airplane wing does. But when it is thrown, notice that the top blade of the boomerang is moving faster through the air than the bottom blade, because of the rotation. This results in there being more lift on the top blade than on the bottom. From a right-handed thrower's perspective, there is a lift up and to the left, more so at the top than at the bottom. The upward lift is what keeps the boomerang in the air. You might think the leftward twist flips the boomerang over, but wait! The boomerang is also a flying gyroscope. Leaning the gyroscopic boomerang over results in its turning to the left, much the same way that leaning a moving bicycle leftward toward the horizontal causes the front wheel to turn and not fall over. (This is also why spinning tops start to slowly turn their axis of rotation when they lean, a process called "precession".) The boomerang doesn't flip over, but instead turns its axis of rotation around in a large horizontal circle, and it comes back to you.

    After a moment's thought, you might wonder whether helicopters suffer the same effect. (How would a boomerang fly if thrown in a horizontal plane?) In fact, they do, and there is a tendency to pitch the helicopter upward (tip the nose up) precisely from this same effect, which the pilot instinctively corrects for.

    (Thanks to Prof. Paul Draper, from the Physics Department of the University of Texas at Arlington, for writing this explanation.)

Why do you feel no acceleration in free fall, even though you are accelerating?

    This wonderful question has many answers. The first, and most direct, is that you do feel the acceleration. You feel an upward fictitious force (not a real force at all, but an effect of inertia) that exactly balances your downward weight. The feeling you experiences is "weightlessness." That's why your stomach feels so funny. You're used to having it pulled downward by gravity but the effect of your fall is to make it feel weightless.

How does a single lens reflex camera work?

    When rays of light from a distant object reach the camera's lens, those rays are spreading apart or "diverging." You can understand this by following the rays of light from one spot on the object, say the tip of a person's nose. The rays of light reflected from the nose spread outward in all directions and only a small portion of them passes into the camera's lens. These light rays are diverging from one another as they travel.

    The camera's lens is a converging lens, meaning that it bends the paths of these light rays so that they diverge less after passing through it. In fact, the lens bends the rays so much that they begin to come together or "converge" after the lens and all the rays of light from the person's nose merge to a single point in space somewhere beyond the lens. Exactly how far from the lens the rays come together depends on the structure of the lens and on the distance between it and the person's nose. When you focus the lens, you're moving the lens so that the rays come together at just the right place to illuminate a single spot on a piece of photographic film. When the distance between the lens and film is just right, all the light from each point on the person comes together at a corresponding point on the film. The lens is then forming a real image of the person on the film and the film records this pattern of light to make a photograph.

    In a single lens reflex camera, light passing through the lens doesn't always fall on the film. Most of the time, this light is redirected by a mirror that follows the lens so that the real image forms on a special glass sheet near the top of the camera. When you look through the viewfinder of the camera, you are actually using a magnifying glass to inspecting this real image, making the camera effectively a telescope. You (or the camera, if it is automatic) then focus the lens to form a sharp real image on the glass sheet before taking the picture. Since this glass sheet is the same optical distance from the lens as the film is, focusing on the glass is equivalent to focusing on the film. When you take the picture, the redirecting mirror quickly flips out of the way and a shutter opens to allow light from the lens to fall directly onto the camera's photographic film. For a brief moment, light from the person passes through the lens and onto the film, forming a real image that is permanently recorded on the film. Then the shutter closes and the mirror swings back to its normal position.

When you open your eyes underwater everything is blurry, but when you wear a mask, you can see clearly. Why can't the eye focus underwater unless it has an air space, provided by the mask, in front of it? -- DW, Cork City, Ireland

    Just as most good camera lenses have more than one optical element inside them, so your eye has more than one optical element inside it. The outside surface of your eye is curved and actually acts as a lens itself. Without this surface lens, your eye can't bring the light passing through it to a focus on your retina. The component in your eye that is called "the lens" is actually the fine adjustment rather than the whole optical system.

    When you put your eye in water, the eye's curved outer surface stops acting as a lens. That's because light travels at roughly the same speed in water as it does in your eye and that light no longer bends as it enters your eye. Everything looks blurry because the light doesn't focus on your retina anymore. But by inserting an air space between your eye and a flat plate of glass or plastic, you recover the bending at your eye's surface and everything appears sharp again.

How does the auto-focusing system on a camera work? -- RM, Lititz, PA

    There are several different systems for autofocusing. I think that the three most popular systems are optical contrast, rangefinder overlap, and acoustic distancing. The optical contrast scheme places a sophisticated light sensitive surface in the focal plane of the camera's lens. This sensor recognizes when sharp focus is achieved by looking for the moment of maximum contrast in the image. When the lens is out of focus, the image is fuzzy and has little contrast. But when the lens is focused properly, the image is sharp and the sensor detects the strong spatial variations in darkness and brightness. The camera automatically scans the focus of its lens until it detects maximum image contrast.

    The rangefinder overlap system observes the scene in front of the camera through two auxiliary lenses that are separated by a few inches. It uses mirrors to overlap the images from these two lenses and can determine the distance to the objects in the picture by the angles of the mirrors. The camera uses this distance measurement to set the focus of its main lens.

    The acoustic distancing system bounces sound waves from the objects in front of the camera to determine how far away they are. The camera then adjusts its main lens for that distance. While this acoustic scheme has the advantage of working even in complete darkness, it's confused by clear surfaces--if you take a picture through a window, it will focus on the window. The optical schemes will focus on the objects rather than the window, but they will only work when there is light coming from the objects. That's why many autofocus cameras that use optical autofocus schemes have built in lights to illuminate the objects during the autofocusing process.

why do people in flash pictures have "red eye"? How do cameras try to solve that problem?

    When light from the flash illuminates people's eyes, that light focuses onto small spots on their retinas. Most of the light is absorbed, by a small amount of red light reflects. Because the lens focused light from the flash onto a particular spot on the retina, the returning light is focused directly back toward the flash. The camera records this returning red light and eyes appear bright red. To reduce the effect, some flashes emit an early pulse of light. People's pupils shrink in response to this light and allow less light to go into and out of their eyes. Professional photographers often mount their flashes a foot or more from the lens so that the back-reflected red light that returns toward the flash misses the lens.

Why do camera flashes make eyes red and why do two flashes correct this problem?

    The retinas of your eyes appear reddish when you look at them with white light. The red eye problem occurs because light from the flash passes through the lens of your eye, strikes the retina (which allows you to see the flash), and reflects back toward the camera. This reflection is mostly red light and it is directed very strongly back toward the camera. The camera captures this red reflection very effectively and so eyes appear red. The double flash is meant to get the irises of your eyes to contract (as they do whenever your eyes are exposed to bright light or you are startled or excited). The first flash causes your irises to contract so that less light from the second flash can pass into and out of your eyes. Unfortunately, this trick doesn't work all that well.

Why are there various types of film (speed, purposes, etc.)?

    The different speeds of film have to do with how light sensitive the film emulsion is. A portion of the surface of a high-speed film will register exposure to light when only a few particles of light (photons) reach it. In contrast, a low speed film requires more photons per square millimeter to undergo the chemical changes of exposure.

    While high speed film can take pictures with less light than low speed film, there is a trade-off. High-speed films are grainier and have less resolution than low speed films. Thus photographs that you would like to enlarge should be taken with relatively slow film.

Is the eye similar to a camera?

    Yes, your eye is exactly like a camera, except that the real image forms on your light sensitive retina rather than on a sheet of film. The lens bends light to a focus on the retina. If you are nearsighted and can only see nearby objects clearly, then your lens is too strong and bends light too much. Light from a distant object focuses before reaching your retina. If you are farsighted and can only see distant objects clearly, then your lens is too weak and bends light too little. Light from a nearby object doesn't reach a focus by the time it strikes your retina. It would focus beyond your retina, if it could continue on through space.

How does the camera know (measure) what the distance is to the object?

    Modern cameras use a variety of techniques to find the distance to objects. Some cameras bounce sound off of the objects and time how long it takes for the echo to return. Others observe the central portion of the image (presumably the object) from two vantage points simultaneous and then adjust the angles at which those two observations are made until the images overlap. This rangefinder technique is the one you use to sense distance with your eyes. You view the object through each eye and adjust the angles of view until the two images overlap (in your brain). At that point, you can tell how far away the object is by how crossed or uncrossed your eyes are. A rangefinder camera has two small viewing windows and lenses to look at the object, just as you have two eyes to look at the object. Finally, some cameras don't really measure the distance to the object but instead adjust the lens until it forms the sharpest possible image. A sharp image has the highest possible contrast while an out-of-focus image will have relatively low contrast. The cameras adjust the lens until the light striking a sensor exhibits maximal contrast (brightest bright spots and darkest dark spots).

How does a video camera work?

    There are many parts to this question, so I'll deal with only two: how the camera forms an image of the scene in front of the camera on its imaging chip and how the camera obtains a video signal from that imaging chip. The first part involves a converging lens--one that bends rays of light toward one another. As the light from a particular spot in the scene passes through the camera's lens, the lens slows the light down. Because the lens' surfaces are curved, this slowing process causes the light rays to bend so that they tip toward one another. These rays continue toward one another after they leave the lens and they all meet at a single point on the surface of the camera's imaging chip. That point on the chip thus receives all the light from only one spot in the scene. Likewise, every point on the imaging chip receives light from one and only one spot in the scene. The lens is forming what is called a "real image"--a pattern of light in space (or on a surface) that is an exact copy of the scene from which the light originated. You can form a real image of a scene on a sheet of paper with the help of a simple magnifying glass. The actual camera lens often contains a number of individual glass or plastic elements, which allow it to bend all colors of light evenly and to adjust the size and brightness of the real image that it forms on the imaging chip.

    The second part of this question revolves around the imaging chip. In this chip, known as a "charge-coupled device," the arriving light particles or "photons" causes electric charge to be transferred into a narrow channel of semiconductor--that is a material that can conduct electricity in a controllable manner. Each photon contains a tiny amount of energy and this energy is enough to move the electric charge into the channel. The imaging chip has row after row of these light-sensitive channels so that the pattern of light striking the chip creates a pattern of charge in its channels. To obtain a video image from these channels, the camera uses an electronic technique to shift the charge through the channels. The camera thus reads the electric charge point-by-point, row-by-row until it has examined the pattern of charge (and thus the pattern of light) on the whole imaging chip. This reading process is just what is needed to build a video signal, since a television also builds its image point-by-point, row-by-row. To obtain a color image, the imaging chip is covered with a tiny pattern of colored filters so that each point on its surface is only sensitive to a certain primary color of light: either red, green, or blue. This sort of color sensitivity mimics that of our own eyes--our retinas respond only to red, green, or blue light, but we see mixtures of those three colors as a much richer collection of colors.

Does your pupil opening and closing have anything to do with it focusing on a more distant object?

    The size of your pupil does not depend on the distance to an object. It depends only on how bright the scene in front of you is. But the size of your pupil does affect your ability to focus. When it is relatively dark and your pupil is wide open, the whole lens of your eye is involved in light gathering. Focusing becomes very critical and you have very little depth of focus. Moreover, if your lens isn't perfect, you will see things as blurry. But when it is bright out and your pupil is small, you are only using the center portion of your lens and everything is in focus. That's why it is harder to focus at night than during the day. When you squint, you are artificially shrinking the effective diameter of the lens in your eye and increasing your depth of focus. Unfortunately, you are also reducing the amount of light that reaches your eye. If you look through a pinhole in a sheet of paper, you will find everything in focus, although it will appear very dim